Acids, Bases, Salts, Buffers

Acids, Bases, Salts, Buffers

- An acid is any solute that dissociates in a solution and releases hydrogen ions, thereby lowering pH
 - Since a hydrogen ion consist solely of a proton, an acid is referred to as a proton donor
 - A strong acid dissociates completely in a solution and occurs essentially in one direction
 - HCl + aq \rightarrow H⁺_(aq) + Cl⁻_(aq)
 - A weak acid fails to dissociates completely and a significant number of molecules remain intact at equilibrium
 - $H_2CO_{3(aq)} \leftrightarrow H^+ + HCO_3^-$

Acids, Bases, Salts, Buffers

- A base is a solute that removes hydrogen ions from a solution, acting as a proton acceptor
 - In a solution, many bases release OH- (hydroxide ion)
 - Hydroxide ions have a strong affinity for H+ and react quickly with them
 - The same terminology applies to strong and weak bases
 - $NaOH_{(s)} + aq \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$
 - $NH_{3(aq)} + H_2O \leftrightarrow NH_4^+_{(aq)} + OH^-_{(aq)}$

Acids, Bases, Salts, Buffers

- A salt is an ionic compound consisting of a cation except a hydrogen ion and an anion except a hydroxide ion
 - A salt is the product of acid-base neutralization, In general acid + base → salt + water
- Buffers are compounds that stabilize pH of a solution by removing or replacing hydrogen ions
 - Buffer systems typically involve a weak acid and its related salt, which functions as a weak base

Salts

- A salt is an ionic compound consisting of a cation except a hydrogen ion and an anion except a hydroxide ion
 - A salt is the product of acid-base neutralization
 - In general acid + base \rightarrow salt + water
 - $NaOH + H_2CO_3 \leftrightarrow NaHCO_3 + H_2O$
 - Carbonic acid (H₂CO₃) and Sodium Bicarbonate (NaHCO₃) are essential in the carbonic acid-bicarbonate buffer system
 - Buffers typically involve a weak acid (such as carbonic acid) and a related salt (such as sodium bicarbonate)

рΗ

- A hydrogen atom involved in chemical reactions can easily lose its electron to become a hydrogen ion, H⁺
- Hydrogen ions are extremely reactive in solutions and in excessive numbers they can break chemical bonds, change the shapes of molecules and disrupt cell and tissue functions

As a result, H⁺ must be regulated precisely

рΗ

- A few H⁺ are present in water
 - $H_2O \leftrightarrow H^+ + OH^-$
 - Very few water molecules ion and the number of hydrogen and hydroxide ions is extremely small
 - One liter of pure water has 0.0000001 mol of hydrogen ions
 - This can be written as $[H^+] = 1 \times 10^{-7} \text{mol/L}$
 - The brackets indicate the "concentration of"
 - pH is a shorthand to indicate this
 - The pH scale is logarithmic, meaning that each decrease in number is actually 10 times greater in H⁺ concentration
 - pH 6 [H⁺] = 1 x 10⁻⁶ mol/L or 0.000001 mol/L
 - ph 5 [H⁺] = 1×10^{-5} mol/L or 0.00001 mol/L
 - ph 4 $[H^+] = 1 \times 10^{-4}$ mol/L or 0.0001 mol/L
 - ph 8 $[H^+] = 1 \times 10^{-8}$ mol/L or 0.00000001 mol/L
- Acids have a lower pH number (more hydrogen ions) and Bases have a higher pH (less hydrogen ions)

Buffers and pH Regulation

- pH regulation is essential for homeostasis in the body
 - Blood, for example, must be kept in the pH range of 7.35 7.45
 - Acidosis is a condition of blood pH below 7.35
 - Alkalosis is a condition of blood pH above 7.45
 - Both conditions can be fatal
- Most metabolic processes create excess H+

Buffers and pH Regulation

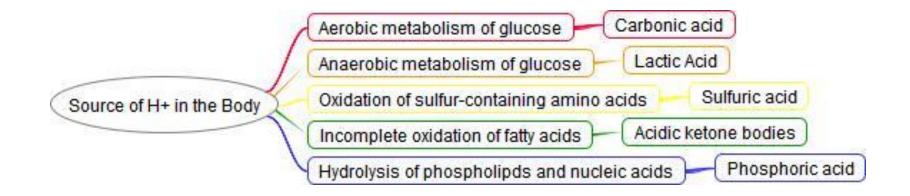
- The body temporarily ties up excess H+ in buffers, excretes H+ via the kidneys in the urine, and permanently ties up H+ via the removal of CO₂ at the lungs
- Buffers are therefore the first line of defense and the respiratory and renal mechanisms are the second
 - The body has three major buffer systems
 - The protein buffer system
 - Contributes to pH regulation in ICF and ECF
 - Amino acids can either release a H⁺ or remove a H⁺
 - The phosphate buffer system
 - Buffers ICF and urine
 - The carbonic acid-bicarbonate buffer system
 - The most important buffer system, we will look at this further

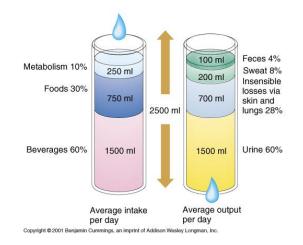
- The body contains three general categories of acids
 - Volatile acids
 - Fixed acids
 - Organic acids

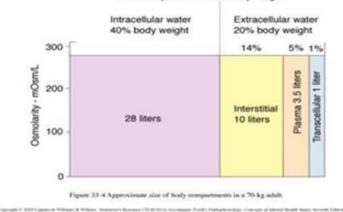
Volatile acids

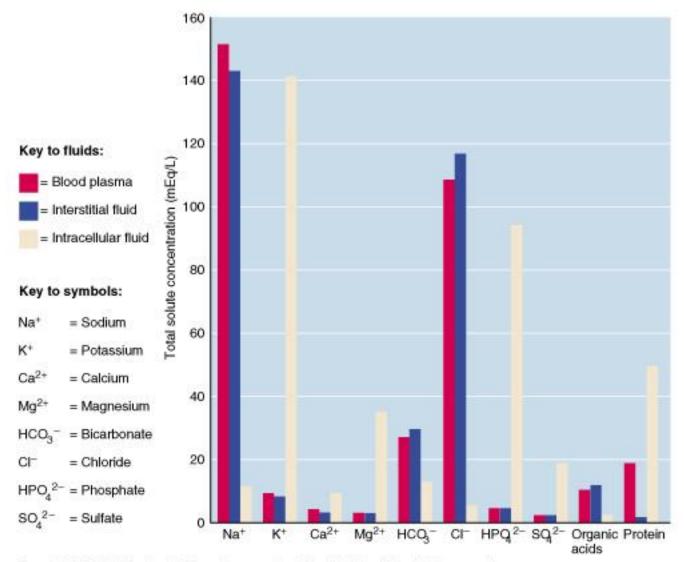

- Acids can leave a solution and enter the atmosphere
 - Carbonic acid (H_2CO_3) is an important volatile acid, as it breaks down in the lungs to $CO_2 + H_2O$, the CO_2 diffuses into the alveoli and leave during expiration
 - In tissues, CO₂ can interact with water to form carbonic acid which dissociates to release hydrogen ions and bicarbonate ions
 - $-\operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} \longleftrightarrow \operatorname{H}_2\operatorname{CO}_3 \longleftrightarrow \operatorname{H}^+ + \operatorname{HCO}_3^{-}$
 - » This is the carbonic acid-bicarbonate buffer system
 - » In effect, it can take excessive H+ released from fixed acids or organic acids and generate volatile acids which can be eliminated at the lungs
 - » The amount of CO₂ in the blood is inversely related to pH (more CO₂ = lower pH d/t increase in H⁺, less CO2 = increase pH d/t less H⁺), therefore breathing de-acidifies the body

- Fixed acids
 - Acids that do not leave solution
 - In the body, these acids stay in the body fluids until they are eliminated at the kidneys
 - Includes acids that are formed from the catabolism of amino acids, phospholipids and nucleic acids


- Organic acids
 - Acid participants in or by-products of aerobic metabolism
 - Lactic acid and ketone bodies are examples
 - Most organic acids are metabolized rapidly, but they can build up during certain circumstances


Maintenance of Acid-Base Balance


- Buffers resist changes in pH
 - Most often, body processes cause a decrease in pH
 - Buffers can resist this because they can tie up H⁺, but eventually the body needs to remove H⁺
 - This can be accomplished two ways
 - The H⁺ can be either permanently tied up as H₂O by removal of CO₂ at the lungs (carbonic acidbicarbonate buffer system)
 - H+ can be secreted from the body fluids at the kidneys and removed with urine


Other Interesting Graphic Relating to Fluid, pH and Electrolyte Balance

Total body water = 60% body weight

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Questions

- What is an acid and does it raise or lower pH?
 - An acid is a solute that releases hydrogen ions
 - An acid is a proton donor
 - Acids lower pH
- What is a base and does it raise or lower pH?
 - A base removes hydrogen ions from a solution
 - Bases are proton acceptors
 - Bases raise the pH of a solution
- What is a salt?
 - A salt is a product of acid-base neutralization
 - It has a cation that is not H⁺ and a anion that is not OH⁻
- What is a buffer? Name 3 buffer systems in the body. Which is the most important?
 - A buffer is a compound that resists changes in pH
 - They stabilize pH by removing or replacing H+
 - The three buffers are
 - The protein buffer system
 - The phosphate buffer system
 - The carbonic acid-bicarbonate buffer system

- What is the first line of defense when pH balance is disturbed in the body?
 - The buffer system
- What is the second line of defense?
 - The respiratory and renal mechanism
- How does the respiratory mechanism raise pH in the body (3 things happen)?
 - H₂CO₃ (carbonic acid) dissociates
 - CO₂ is removed
 - H^+ is permanently tied up in H_2O
- How does the renal mechanism raise pH in the body?
 - By the secretion of H⁺ into urine

For the Test (Test 3)

• Be able to write out and understand the formula for the carbonic acid-bicarbonate buffer system

 $- \operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} \longleftrightarrow \operatorname{H}_2\operatorname{CO}_3 \longleftrightarrow \operatorname{H}^+ + \operatorname{HCO}_3^-$

- What happens when the body's metabolic reactions produce extra H+
 - It associates with HCO_3^- to form $H_2CO_3^-$
- What happens if there is not enough H+ in body fluids

- H_2CO_3 dissociates into H^+ and HCO_3^-

- What happens when H_2CO_3 travels by the alveoli?
 - H₂CO₃ dissociates into CO₂ and H₂O , CO₂ is removed during exhale and H⁺ is permanently tied up in a water molecule