General Chemistry

Lecture 5

The Mole

- The Mole is the standard unit of measurement for the amount of substances or chemical units
- A mole of a substance contains 6.02 x 10²³ atoms of that substance
- 6.02 x 10²³ is Avagadro's number (named after an Italian physicist)

Moles of Elements in a Formula

- 1 mole of an element contains 6.02 x 10²³ atoms of that element
 - Ex) 1 mole of C contains 6.02 x 10²³ atoms of C
- 1 mole of a compound contains 6.02 x 10²³
 - Ex) 1 mole of $C_6H_{12}O_6$ contains the following
 - 6 moles of C
 - 12 moles of H
 - 6 moles of O

Molar Mass

- A mole of a substance is a unit of measuring elements and compounds in a practical way using an ordinary scale
- The molar mass of an element is the quantity in grams that equals the atomic mass of an element
- To equal this quantity in grams it would take 6.02 x 10²³ atoms of that element
 - Ex) 1 mole of C would equal 12.01g of the element C and would contain approximately 6.02 x 10²³ atoms of carbon
- The molar mass of compounds is determined by multiplying the molar mass of each element by its subscript and adding the results
 - Ex) Li₂CO₃ 2 moles Li x 6.94 g Li/1 mole Li = 13.8g of Li, 12.0g C/1 mole C, 3 moles O x 16.0 g O/1 mole O = 48.0g O molar mass of = 13.6g of Li + 12.0 g C + 48.0g of O = 73.8g Li₂CO₃

Calculations Using Molar Mass

 Molar mass is used to convert from moles of a substance to grams or from grams to moles

Chemical Equations

Chemical Properties and Chemical Change

- Chemical properties describe the ability of a substance to change into a new substance
- When a chemical change occurs, the original substance is converted to one or more new substances.
 - Ex) $O_2 + 2 H_2 \rightarrow 2H_2O$

- In a chemical equation, the formulas of the reactants are written on the left of the arrow and the formulas of the products are on the right
- If there are two or more formulas on the same side, a + sign is used
- Δ indicates heat was used
- The state (solid –s, liquid l, or gas – g) is often indicated
- If the substance is dissolved in water (aq) is noted to indicate

Chemical Properties and Chemical Change

 Each reaction must be written as a balanced equation, which shows the same number of atoms of each element in the reactants and products

- When chemical reactions occur, the bonds are broken and formed so that there is a difference between the reactants and products.
- However, the amount of atoms are the same on both sides of the equation
- Atoms are neither gained, lost, or changed into other types of atoms during a chemical reaction

Chemical Properties and Chemical Change

- A compound is written by giving its chemical formula. This formula lists the symbols of the elements that make it up and indicates the number of atoms of each element with a subscript
- If no subscript is given, it is understood to be 1
- C₁₂H₂₂O₁₁, H₂O, NaCl

Types of Reactions

- A great number of reactions occur in nature
- These include
 - Combination reactions
 - $S + O_2 \rightarrow SO_2$
 - Decomposition reactions
 - $S + O_2 \rightarrow SO_2$
 - $CaCO_3 \rightarrow CaO + CO_2$
 - Replacement reactions
 - Zn +2HCl \rightarrow ZnCl + H₂
 - Combustion reactions
 - $CH_4 + 2OH \rightarrow CO_2 + 2H_2O + energy$
 - Oxidation-Reduction Reaction

Oxidation, Free Radicals and Antioxidants

Oxidation - Reduction

- Oxidation and Reduction occur simultaneously and are referred to as redox reactions
- Oxidation is seen with the browning of fruit, rusting of metal, and with the patina seen on copper all when exposed to oxygen
 - Therefore early understanding of oxidation involved the introduction of oxygen to other substances
 - $2H_2 + O_2 \rightarrow 2H_2O$ the hydrogen is oxidized and the oxygen is reduced

Oxidation - Reduction

- This description was not complete enough to describe all redox reactions.
- Another way to describe oxidation and reduction is that oxidation involves the loss of hydrogen and reduction involves the gain of hydrogen through the adding or removal of hydrogen
 - CH₄ + 2O₂ → CO₂ + 2H₂O − both the carbon and hydrogen are oxidized, part of the oxygen is reduced

Oxidation - Reduction

- And another way of describing redox reactions can help describe oxidation that does not involve oxygen.
- This involves the transfer of electrons.
- In this model, a substance that loses electrons is said to be oxidized while a substance that gains electrons is reduced
 - $Mg + Cl_2 \rightarrow Mg_2^+ + 2Cl^-$ Magnesium is oxidize while the chlorine is reduced
 - This is the easiest and most important use of the term oxidation and reduction and can be remembered by the memory aid OIL RIG (Oxidation Involves Loss – Reduction Involves Gain)

Oxidation – Reduction Information for the Test

•For the test, we can define oxidation and reduction as follows

-Oxidation is the loss of electrons and results in the loss of hydrogen atoms together with one or two electrons or the gain of an oxygen atom or hydroxyl group

-Reduction is the gain of electrons and results in the gain of hydrogen atoms or loss of an oxygen atom

-If a substance gains electrons (and is reduced), it is referred to as an oxidizing agent

Glucose Oxidation

- These reactions are involved in the oxidation of glucose to provide energy
- Glucose oxidation is a chemical process that provides energy for an organism to carry out all of its required activities.
- During this process, glucose, a simple sugar molecule obtained from food, is broken down into carbon dioxide and water.
 - $C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O$
- This reaction releases energy and stores it in a chemical form (ATP) for the cell to use.
- There are three separate stages of glucose oxidation:
 - Glycolysis,
 - The citric acid cycle (Krebs cycle),
 - Electron transport system (Oxidative Phosphorylation)

Glycolysis

- During glycolysis, glucose molecules (six-carbon molecules) are split into two pyruvates (threecarbon molecules) during a sequence of enzyme-controlled reactions
- Glycolysis is the breakdown of glucose to two molecules of pyruvate
 - This process uses enzymes to catalyze the reactions
 - These reactions collectively use 2 ATP molecules, but create 4 ATP molecules

Krebs Cycle and Electron Transport

•Pyruvate is metabolized by the Krebs cycle (citric acid cycle), again with the assistance of enzymes

–These reactions metabolize pyruvate to CO_2

-They produces two more ATP molecules

•These reaction also produce other molecules which are used to transfer H⁺ into the mitochondria to produce even more ATP

-32 ATP molecules are created

Oxidation of Glucose Glycolysis, Krebs Cycle, Oxidative Phosphorylation

•Collectively 36 molecules of ATP are produced

•Collectively they use oxygen to 'burn' glucose and metabolize it into CO_2 and H_2O • $C_6H_{12}O_6 + 6O_2 >> 6CO_2 + 6H_2O$ Oxidation Free Radical Damage and Antioxidants

- Radicals are compounds that have an unpaired electron usually in the outer orbital (open electron shell)
- Free radicals are radicals that exist independently in solution or in a lipid environment
- Free radical damage is responsible for things becoming rancid or decaying and are involved in tissue damage and aging
- Radicals are created in many reaction in the body as intermediate steps and many times are not released into cells and are not harmful

Oxidation Free Radical Damage and Antioxidants

- Other compounds can be converted to free radicals
- This occurs due to being exposed to an oxidizing agent that removes an electron from another substance or by radiation
- Free radicals are unstable and are always searching for electrons
- When the get the opportunity, they 'steal' and electron from another compound, thus turning it into a free radical
- This can be especially damaging to DNA or the plasma membrane of cells
- Compounds that are radicals can be written with or without the radical showing
 - Nitrogen dioxide (NO₂ a radical in smog and cigarette smoke) may be designated as NO₂•

Oxidation

Free Radical Damage and Antioxidants

- Antioxidants, found in large quantities in fresh fruits and vegetables can react with free radicals and stop this chain reaction
- There are several enzyme systems in the body that scavenge free radicals, but there are also important micronutrient sources such as:
 - Vitamin E : d-alpha tocopherol. A fat soluble vitamin present in nuts, seeds, vegetable and fish oils, whole grains (esp. wheat germ), fortified cereals, and apricots
 - Vitamin C : Ascorbic acid. is a water soluble vitamin present in citrus fruits and juices, green peppers, cabbage, spinach, broccoli, kale, cantaloupe, kiwi, and strawberries
 - **Beta-carotene** is a precursor to vitamin A (retinol) and is present in liver, egg yolk, milk, butter, spinach, carrots, squash, broccoli, yams, tomato, cantaloupe, peaches, and grains. (NOTE: Vitamin A has no antioxidant properties and can be quite toxic when taken in excess.)
 - Additionally, selenium, a trace metal that is required for proper function of one of the body's antioxidant enzyme systems, is sometimes included in this category
 - The body cannot manufacture these micronutrients so they must be supplied in the diet